Temperature Dependence of Evaporation Coefficient for Water Measured in Droplets in Nitrogen under Atmospheric Pressure
نویسندگان
چکیده
The evaporation and the thermal accommodation coefficients for water in nitrogen were investigated by means of the analysis of evaporation of pure water droplet as a function of temperature. The droplet was levitated in an electrodynamic trap placed in a climatic chamber. The levitation time was in the range of seconds, which corresponds to the characteristic time scales of cloud droplet growth. Droplet radius evolution and evaporation dynamics were studied as a function of temperature, by analyzing the angle-resolved light scattering Mie interference patterns. A model of droplet evolution, accounting for the kinetic effects near the droplet surface, was applied. The evaporation coefficient for the temperature range from 273.6 to 298.3 K was found to be between 0.054 and 0.12 with a minimum of 0.036 0.015 seemingly coinciding with water maximum density at 277.1 K. The average value of thermal accommodation coefficient over the temperature range from 277 to 289 K was found to be 0.7 0.2.
منابع مشابه
Temperature dependence of evaporation coefficient of water in air and nitrogen under atmospheric pressure; study in water droplets
The evaporation coefficients of water in air and nitrogen were found as a function of temperature, by studying the evaporation of pure water droplet. The droplet was levitated in an electrodynamic trap placed in a climatic chamber maintaining atmospheric pressure. Droplet radius evolution and evaporation dynamics were studied with high precision by analyzing the angle-resolved light scattering ...
متن کاملTemperature dependence of the evaporation coefficient of water in air and nitrogen under atmospheric pressure: study in water droplets.
The evaporation coefficients of water in air and nitrogen were found as a function of temperature by studying the evaporation of a pure water droplet. The droplet was levitated in an electrodynamic trap placed in a climatic chamber maintaining atmospheric pressure. Droplet radius evolution and evaporation dynamics were studied with high precision by analyzing the angle-resolved light scattering...
متن کاملA new electrodynamic balance design for low temperature 1 studies
15 In this paper we describe a newly designed cold electrodynamic balance (CEDB) system, 16 built to study the evaporation kinetics and freezing properties of supercooled water droplets. 17 The temperature of the CEDB chamber at the location of the levitated water droplet can be 18 controlled in the range: -40 ̊C to +40 ̊C, which is achieved using a combination of liquid 19 nitrogen cooling and...
متن کاملRoom temperature water Leidenfrost droplets.
We experimentally investigate the Leidenfrost effect at pressures ranging from 1 to 0.05 atmospheric pressure. As a direct consequence of the Clausius–Clapeyron phase diagram of water, the droplet temperature can be at ambient temperature in a non-sophisticated lab environment. Furthermore, the lifetime of the Leidenfrost droplet is significantly increased in this low pressure environment. The ...
متن کاملA new electrodynamic balance (EDB) design for low-temperature studies: application to immersion freezing of pollen extract bioaerosols
In this paper we describe a newly designed cold electrodynamic balance (CEDB) system, built to study the evaporation kinetics and freezing properties of supercooled water droplets. The temperature of the CEDB chamber at the location of the levitated water droplet can be controlled in the range −40 to +40 C, which is achieved using a combination of liquid nitrogen cooling and heating by positive...
متن کامل